The number and spatial distribution of IP3 receptors underlying calcium puffs in Xenopus oocytes.
نویسندگان
چکیده
Calcium puffs are local Ca(2+) release events that arise from a cluster of inositol 1,4,5-trisphosphate receptor channels (IP(3)Rs) and serve as a basic "building block" from which global Ca(2+) waves are generated. Important questions remain as to the number of IP(3)Rs that open during a puff, their spatial distribution within a cluster, and how much Ca(2+) current flows through each channel. The recent discovery of "trigger" events-small Ca(2+) signals that immediately precede puffs and are interpreted to arise through opening of single IP(3)R channels-now provides a useful yardstick by which to calibrate the Ca(2+) flux underlying puffs. Here, we describe a deterministic numerical model to simulate puffs and trigger events. Based on confocal linescan imaging in Xenopus oocytes, we simulated Ca(2+) release in two sequential stages; representing the trigger by the opening of a single IP(3)R in the center of a cluster for 12 ms, followed by the concerted opening of some number of IP(3)Rs for 19 ms, representing the rising phase of the puff. The diffusion of Ca(2+) and Ca(2+)-bound indicator dye were modeled in a three-dimensional cytosolic volume in the presence of immobile and mobile Ca(2+) buffers, and were used to predict the observed fluorescence signal after blurring by the microscope point-spread function. Optimal correspondence with experimental measurements of puff spatial width and puff/trigger amplitude ratio was obtained assuming that puffs arise from the synchronous opening of 25-35 IP(3)Rs, each carrying a Ca(2+) current of approximately 0.4 pA, with the channels distributed through a cluster 300-800 nm in diameter.
منابع مشابه
Subcellular mechanisms of presenilin-mediated enhancement of calcium signaling.
Mutations in presenilin-1 (PS1), the leading cause of early-onset, autosomal-dominant familial Alzheimer's disease (FAD), enhance calcium signaling mediated by inositol 1,4,5-trisphosphate (IP3). To elucidate the subcellular mechanisms underlying this enhancement, we used high resolution line-scanning confocal microscopy to image elementary calcium release events ("puffs") in Xenopus oocytes ex...
متن کاملInitiation of IP3-mediated Ca2F waves in Xenopus oocytes
Inositol (1,4,5)-trisphosphate (IP3) evokes Ca2F liberation in Xenopus oocytes as elementary events (Ca2F puffs) that become coupled to propagate Ca2F waves with increasing [IP3]. To investigate this transition between local and global Ca2F signaling, we developed an optical method for evoking rapid subcellular Ca2F elevations, while independently photoreleasing IP3 and simultaneously recording...
متن کاملQuantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes.
We determine the calcium fluxes through inositol 1,4,5-trisphosphate receptor/channels underlying calcium puffs of Xenopus laevis oocytes using a simplified version of the algorithm of Ventura et al. An analysis of 130 puffs obtained with Fluo-4 indicates that Ca2+ release comes from a region of width approximately 450 nm, that the release duration is peaked around 18 s and that the underlying ...
متن کاملLocalization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP3.
The Xenopus oocyte has been a favored model system in which to study spatio-temporal mechanisms of intracellular Ca2+ dynamics, in large part because this giant cell facilitates intracellular injections of Ca2+ indicator dyes, buffers and caged compounds. However, the recent commercial availability of membrane-permeant ester forms of caged IP3 (ci-IP3) and EGTA, now allows for facile loading of...
متن کاملEnhanced ER Ca2+ store filling by overexpression of SERCA2b promotes IP3-evoked puffs.
Liberation of Ca(2+) from the endoplasmic reticulum (ER) through inositol trisphosphate receptors (IP(3)R) is modulated by the ER Ca(2+) content, and overexpression of SERCA2b to accelerate Ca(2+) sequestration into the ER has been shown to potentiate the frequency and amplitude of IP(3)-evoked Ca(2+) waves in Xenopus oocytes. Here, we examined the effects of SERCA overexpression on the element...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 91 11 شماره
صفحات -
تاریخ انتشار 2006